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Abstract

In this paper we present a numerical study of the fluid flow during directional solidification of a binary alloy (Pb85wt%Sn) in presence
of a forced convection. The latter is driven by a rotating magnetic field (RMF) the strength of which, expressed by the magnetic Taylor
number, varies between 104 < Ta < 2 · 106. The focus of this paper is the problem when cooling starts simultaneously with the acceler-
ation of the melt from a state of rest. Thus, we study the interference of the so-called spin-up problem with the solidification of the melt.
The numerical simulations are based on a mixture model formulation. We show that three distinct fluid flow phases exist. During the first
two phases (initial adjustment and inertial phase) the acceleration of the liquid takes place which occurs in close similarity to the isother-
mal spin-up [P.A. Nikrityuk, M. Ungarish, K. Eckert, R. Grundmann, Spin-up of a liquid metal flow driven by a rotating magnetic field
in a finite cylinder. A numerical and analytical study, Phys. Fluids 17 (2005) 067101]. The third phase is characterized by a braking of the
fluid flow due to the progressive solidification increasing the aspect ratio of the liquid (2R0/Hl) and decreasing the forcing. We show that
as soon as the velocity of the secondary flow exceeds the velocity of the solidification front, a convex shape of the mushy zone can be
observed. In parallel, Taylor–Görtler vortices advected by the secondary flow towards the mushy zone might impose a wavy substructure
on the latter. At the end, predictions with respect to heat flux and macrosegregations are given.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Rotating magnetic fields are widely used in the metallur-
gical industry to eliminate flow asymmetries and to control
heat and mass transfer toward the solidification front [1,2].
This effect is based on the swirling flow that homogenizes
the liquid phase by suppressing thermosolutal convection
and shrinkage-driven flow. Furthermore an important
potential of RMFs lies in the ability to promote the colum-
nar-to-equiaxed transition (CET) [3–5].

A rotating magnetic field (RMF) of angular frequency x,
applied to a liquid metal, drives a swirling flow by virtue of
the azimuthal Lorentz force induced. If the liquid is con-
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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fined in a cylinder of finite length, H0, a secondary flow in
the meridional plane appears, resulting from the imbalance
between centrifugal force and radial pressure gradient
inside the horizontal boundary layers [2]. A recent study
by the authors [7,6] showed that the development of the
RMF-driven flows occurs on the spin-up time scale given
by tspin-up ¼ H0ffiffiffiffiffiffi

mXce
p . On applying this knowledge of RMF-

driven flows onto the directional solidification we must be
aware of the following key issues. First, the RMF-driven
flow requires a characteristic time, tspin-up, to become hydro-
dynamically developed, which means that the inviscid core
actually rotates only from this moment on with angular
velocity Xce. Whether this transient must be taken into
account or not depends on the cooling rate and the instant
of switching on the RMF. Second, with progressive solidifi-
cation the driving force itself is modified. Third, the aspect
ratio A (diameter divided by height), in which the forced
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Nomenclature

A aspect ratio of the cylinder
B magnetic induction
cp specific heat
C mixture mass concentration of Sn
D mass diffusion coefficient
f mass fraction
g gravity acceleration
h enthalpy
Uh volume-averaged azimuthal velocity
Urz volume-averaged meridional velocity
FL Lorentz force
Ha Hartmann number
Ta magnetic Taylor number
Fr Froude number
Gr Grashof number
E Ekman number
H0 height of cylinder
R0 radius of cylinder
r,h,z cylindrical coordinate axes
~u velocity
L latent heat
p pressure
pB the ratio of the number of poles to the number

of phases in the current source
T temperature
Te eutectic temperature
t time
Rex Reynolds number corresponding to the mag-

netic field rotation

Greek symbols

X angular velocity
k thermal conductivity
r electric conductivity
l dynamic viscosity
q density
bS solutal expansion coefficient
bT thermal expansion coefficient
e volume fraction of the liquid
# frequency of the alternating current
m kinematic viscosity
x angular frequency of the magnetic field
�x relative frequency of the magnetic field
l0 magnetic permeability of freespace
g axial efficiency of the Lorentz force

Subscripts

e eutectic
l liquid phase
s solid phase
m mixture
ce core effective
cr critical
t turbulence
ref reference
0 initial value
w wall
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convection takes place is increased. The convection must
adapt to this since the ratio of forcing Lorentz torque to
the braking torques imposed from side walls and bottom
is changed.

First insights into the flow structure during RMF-driven
solidification came from numerical [3,9] and experimental
[10] works. The experimental and computational study of
an aluminum alloy A356 with a RMF solidification [3]
showed, beside the promotion of the CET, a significant
radial and axial segregation of silicon concentration and
eutectic fraction. However, the details of the turbulent flow
could not be measured and the algebraic turbulence model
used in the numerical simulations was not able to capture
flow instabilities such as Taylor–Görtler vortices. The
RMF-driven directional solidification of binary AlSi7 alloy
under microgravity conditions was numerically studied by
Hainke et al. [9]. They showed that beyond a certain Ta

number a liquid channel at the axis of the sample inside
the mushy zone is formed which is responsible for the mac-
rosegregations detected. These simulations are restricted to
Ta numbers which are several orders of magnitude smaller
than those used in technological applications of RMFs.
First measurements of the velocity fields during solidifica-
tion of PbSn alloys by Eckert et al. [10] show, at an
advanced stage of solidification, that significant deviations
occur from the symmetric double vortex structure known
from the isothermal case.

To sum up, our understanding of the complex interac-
tions between liquid, mush zone, solidification front and
RMF-driven convection is far from being complete. All
of the key issues addressed above still await detailed con-
sideration. In particular, how relevant is the spin-up phase
for the entire solidification? How does the RMF-driven
flow modify the shape of the mush zone? To gain deeper
insights into these questions we use the fluid dynamics code
of [7,6] combined with a mixture model [11] model which is
particularly suited to study the aspects of fluid flow during
solidification. The model system considered in this study is
a binary PbSn alloy (Pb85wt%Sn) solidified with a cooling
rate for which the solidification time and tspin-up are compa-
rable. In this paper we show for the first time important
details about the development of the RMF-driven flow
during solidification up to Ta � O(2 · 106). Beside the
identification of different flow phases we show the impact
of the secondary flow which becomes noticeable as soon
as its averaged velocity exceeds that of the solidification
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front. Furthermore we analyze the influence of Taylor–
Görtler vortices on the shape of the mushy zone.

The paper is organized as follows: in Section 2, the mix-
ture model and the relationships needed for the closure of
the energy and the species conservation equations are
introduced. This section is completed with a description
of the numerics and its validation. In Section 3 we analyze
the flow dynamics in the case when spin-up of the melt and
solidification interfere. To better understand the impact of
gravity on the flow patterns observed in Section 3.3 we
show simulations with vanishing gravitational acceleration.
The macrosegregations resulting from the RMF-driven
flow are studied in Section 3.4. The discussion in Section
4 is focused on a criterion for the Ta number beyond which
the effect of buoyancy can be neglected. The results are
summarized in Section 5.

2. Mathematical formulation of the problem

2.1. Rotating magnetic field

We consider a finite cylinder with radius R0 and height
H0 filled with a liquid alloy. The rotating magnetic field ini-
tializes a Lorentz force, FL, leading to the rotation of the
liquid alloy. The induced FL is composed of two parts: a
mean axisymmetric component which is time-independent
and a time-dependent one, oscillating with the double fre-
quency. The latter one has a minor effect on the fluid flow
[12] and is therefore not considered in this work. The inter-
action of a RMF with a conducting liquid depends on

several dimensionless quantities: Ha ¼ BR0

ffiffiffiffi
r
2l

q
, Rex ¼ qxR2

0

pBl

and �x ¼ l0rxR
2
0, where x = 2p#, and the aspect ratio

A = 2R0/H0. Ha and Rex can be unified to the magnetic
Taylor number Ta = Ha2Rex.

In our case the RMF is of low frequency and low induc-
tion. The low-frequency case is justified due to �x < 1 lead-
ing to a skin depth

ffiffiffiffiffiffiffiffiffiffiffi
xrl0

p� ��1
of approximately 5 cm

which exceeds the radius of the mold we use
(R0 = 2.5 cm). The low-induction condition implies that
the angular velocity induced by the RMF does not change
the magnetic field applied. It is satisfied since Ha4

Rex
� 1 [13].

With respect to PbSn alloy, geometry and RMF
(# = 50 Hz, pB = 1) we use the following values: A =
0.79, �x ¼ 0:471, Rex = 8.15 · 105. The corresponding val-
ues of Taylor and Hartmann numbers are given in Table 1.

Once the low-frequency and low-conduction conditions
are fulfilled, an analytical solution can be written for the
time-averaged Lorentz force (in electroconductive homoge-
Table 1
The values of magnetic Taylor, Hartmann, Ekman numbers, core rotation rat

B (mT) Ta Ha E Grid (

0.5 5.1 · 104 0.25 1.1 · 10�3 50 · 1
1 2.04 · 105 0.5 4.4 · 10�4 70 · 1
3 1.83 · 106 1.5 1.0 · 10�4 100 · 2

The grids and time steps used by numerical simulations are included.
neous media), which has an azimuthal component (the
meridional component of the Lorentz force has a minor
effect on the fluid flow in comparison to the azimuthal com-
ponent [13], thus we neglect it). It is a function of the posi-
tion only and has the following shape [14]:

F Lh ¼
1

2
r � x � B2 � r

� 1� 2

r0
X1
k¼1

J 1ðfkr0Þ � cosh fk z0 � 1
2
H 0� �� �

f2k � 1
� �

� J 1ðfkÞ � cosh 1
2
fkH

0� �
 !

; ð1Þ

where z 0 = z/R0, r
0 = r/R0, H

0 = H0/R0, J1 is Bessel func-
tion of the first kind, fk are the roots of J 0

1ðxÞ ¼ 0.

2.2. Assumptions

The continuum model [11] has been adopted for the bin-
ary alloy solidification under the following assumptions:

1. The differences in density and electric conductivity
between solid and liquid phase are neglected.

2. The mushy region is modeled by means of using a mix-
ture viscosity.

3. The phases are in local thermodynamic equilibrium. The
phase diagram is applied.

4. The flow of the liquid phase is axisymmetric.
5. The solid and liquid phases are assumed to have the

same velocity in the upper mushy zone (e > ecr).

The last assumption follows from ql = qs (assumption
1). As it was shown by Ni and Incropera [15] for equivalent
phase densities it is reasonable to assume equivalent solid
and liquid velocity components, see Eqs. (13) and (20) in
Ref. [15]. Unfortunately we did not find in the literature
theoretically predicted relationship between velocities of
solid and liquid phases for the case of forced swirling liquid
melt. Generally the assumption 5 corresponds to the limit
case frequently used in the modeling of an equiaxed grain
movement [16,17].

2.3. Governing equations

Based on the assumptions made above, the set of equa-
tions in Boussinesq approximation has the following form:

Mass conservation equation:

oq
ot

þr � ðq~uÞ ¼ 0. ð2Þ
e and spin-up time corresponding to magnetic induction

CVr · CVz) Dt (s) Xce (s
�1) tspin-up (s)

20 0.025 0.32 228.9
50 0.025 0.80 144.2
60 0.02 3.48 69.3



1504 P.A. Nikrityuk et al. / International Journal of Heat and Mass Transfer 49 (2006) 1501–1515
Momentum conservation equation:

oðq~uÞ
ot

þr � ðq~u �~uÞ ¼ �rpþr � ðlmr~uÞ þ q~gðbTðT � T refÞ

þ bCðC � CrefÞÞ þ ~F L; ð3Þ

where Tref and Cref correspond to the initial temperature,
T0 = 293 �C, and the mixture mass concentration of Sn,
C0 = 0.85, of the molten alloy, respectively. The projection
of the momentum conservation equation in azimuthal
direction has the form:

oðquhÞ
ot

þr � ðq~u � uhÞ ¼ r � ðlmr~uÞ �
lmuh
r2

� quruh
r

þ F Lh;

ð4Þ
where the last term in the Eqs. (3) and (4) involves the Lor-
entz force, which has only an azimuthal component. The
mixture viscosity is calculated by using the following
approximation formula [3]:

lm ¼
ll � eð4:5�ð1�eÞÞ; e P ecr;

b1 � ð1� eÞ þ b2; ðecr � 0:1Þ < e < ecr;

ell þ ð1� eÞls; e 6 ðecr � 0:1Þ.

8><
>: ð5Þ

Note that in this work we use ecr = 0.8, instead of escr ¼ 0:4
as it was in [3]. The expressions (5) divide the mushy zone
into two zones. The first one for which e P ecr is a moder-
ately viscous zone still allowing for fluid flow. The second
zone (e < ecr) is a highly viscous one. The constants b1
and b2 in Eq. (5) were obtained from a linear interpolation
between the points (ecr � 0.1) and ecr. The value of ls was
set to 100 Pa s.

Energy conservation equation:

oðqhÞ
ot

þr�ðq~u �hÞ¼r� k
cps

rh
� �

þr� k
cps

rðhs�hÞ
� �

�Sh.

ð6Þ

Here Sh stands for the source term rqð~u� ~usÞrðhl � hÞ
which takes into account that~u� ~us instead of~u is the per-
tinent velocity by which latent heat is advected. Note that
Table 2
The material properties of Pb and Sn

Symbol Properties

Lf Latent heat (J/kg)
Tmelt Melting temperature (�C)
cps Specific heat of the solid phase (J/kg K)
cpl Specific heat of the liquid phase (J/kg K)
ks Thermal conductivity of the solid phase (W/m K)
kl Thermal conductivity of the liquid phase (W/m K)
qs Density of the solid phase (kg/m3)
ql Density of the liquid phase (kg/m3)
q Average density (kg/m3)
ll Molecular viscosity of the liquid (N s/m2)
Dl Binary diffusion coefficient Sn in Pb for the liquid phase (m
Ds Binary diffusion coefficient Sn in Pb for the solid phase (m2

r = 1.5 · 106 (A/V m).
Sh = 0 when solid and liquid phases move with the same
velocity.

The liquid and solid enthalpies are related to the equilib-
rium temperature through the following thermodynamic
relations:

hl ¼ cplT þ ðcps � cplÞT e þ L and hs ¼ cpsT . ð7Þ
Species mass conservation equation:

oðqCÞ
ot

þr � ðq~u � CÞ ¼ r � ðqDmrCÞ

þ r � ðqDmrðCl � CÞÞ � Sc. ð8Þ

Here Sc ¼ rqð~u� ~usÞrðCl � CÞ is the source term govern-
ing the convective transport of solute rejected from the
mushy zone. Again, Sc = 0 if there is no relative movement
between liquid and solid.

Based on the assumption 1 the mixture quantities are
defined in the following manner:

fl ¼ e; f s ¼ ð1� eÞ; ð9Þ
h ¼ fshs þ flhl; C ¼ fsCs þ flCl. ð10Þ
Material properties of the mixture, such as the thermal
conductivity and the mass diffusion coefficient, are linear
dependent on the volume fraction of liquid. Material prop-
erties of each alloy component were calculated from linear
dependency on the mass concentration of its component.
The material properties of pure Pb and Sn are listed in
Table 2.

2.4. Closure of energy and species conservation equations

The closure of the system of conservation equations
requires supplementary relationships between e, h and C.
With the assumption of local equilibrium, these expressions
can be obtained from the equilibrium phase diagram [22].
The volume fraction of the liquid in the mushy zone is
approximated by means of a conduction-dominated solid-
ification rule:

e ¼ T � T s

T l � T s

����
����; ð11Þ
Sn Pb References

59600 23200 [18]
231.9 327 [18]
226 125 [19]
238 210 [19]
62 35.3 [19]
28 16 [19]
7280 11340 [18]
7000 10821 [20]
7140 11085.5
1.78 · 10�3 2.4 · 10�3 [21]

2/s) 1.5 · 10�9 [21]
/s) 1.5 · 10�12 [21]
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Fig. 1. Scheme of the calculated domain.
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where Ts and Tl are the temperatures on the solidus and
liquidus line in the phase diagram. The functional depen-
dencies of Ts and Tl, which were gained by approximation
of the phase diagram [22] by means of the least square
method have the following form:

T l ¼

327:05� 338:39 � C þ 479:62 � C2 � 500:93 � C3;

C 6 0:619;

101þ 134:9 � C � 3:91 � C2;

0:619 < C < 1;

8>>>><
>>>>:

ð12Þ

T s ¼

327:52� 884:7 � C þ 7181:11 � C2 � 36339:5 � C3;

C 6 0:183;

183 �C;

0:183 < C 6 1.

8>>>><
>>>>:

ð13Þ

An overview of existing algorithms for the closure problem
is given in [23]. Most of the algorithms are based on the
temperature-source energy equation, where the tempera-
ture is calculated directly from the energy equation. In this
work we introduce an iterative procedure for the calcula-
tion of the volume fraction of liquid if the mixture enthalpy
is the principle variable. In order to define the volume frac-
tion of liquid from the given mixture enthalpy and mixture
mass concentration at the given time, the set of Eqs. (7),
(9), (10) and (11)–(13) is solved iteratively. This procedure
is done for each nodal point of the grid and includes the
following steps:

1. Calculate Tl and Ts from Eqs. (12) and (13) by using C

gained from Eq. (8).
2. Calculate fl, fs and L = LSn Æ Cl + LPb Æ (1 � Cl), where

Cl is taken from phase diagram according current value
of T.

3. Calculate T iþ1 ¼ h�fl�½ðcps�cplÞ�T eþL�
cpsfs�cplfl

.

4. If T i+1 P Tl, so e = 1, stop. T i+1
6 Ts, so e = 0, stop.

5. Calculate ei+1 from Eq. (11). To avoid oscillations, aris-
ing from the volume fraction calculation on the liquid/
mush- and solid/mush-boundaries, the following relaxa-
tion is used: ei+1 = (1 � ae) Æ e

i + ae Æ e
i+1 where ae is the

relaxation factor which was set equal to 0.5. ei is the
liquid volume fraction from the previous iteration.

6. Check the convergence: If jT i+1 � T ij < 10�3, then stop;
if not then T i = T i+1, ei = ei+1 go to 2.

2.5. Alloy composition, boundary conditions, numerical

scheme and code validation

In this study we restrict ourselves to the hypereutectic
alloy Pb85wt%Sn. When starting unidirectional solidifica-
tion (UDS), Pb85wt%Sn shows an initially stable stratifica-
tion with respect to both the thermal and the solutal
density change. This is due to cooling from below and
rejection of heavier Pb. Thus without forced convection,
the UDS of Pb85wt%Sn-alloy is not affected by thermosol-
utal convection since shrinkage-driven flow is negligible.
However, as soon as RMF-driven convection sets in, radial
temperature and solute gradients can appear due to the sec-
ondary flow. Thus with advancing solidification buoyancy
must be taken into account.

Fig. 1 sketches the domain used in the computations.
The initial temperature was set to 293 �C according to
the experiment [4]. To model the mold�s bottom cooling
we use a time-dependent Dirichlet boundary condition
for the energy conservation equation in the form of the
given temperature. The temperature values were taken
from the experiment done by Willers et al. [4]. Namely
the bottom temperature we used equals to the temperature
measured by the nearest to the bottom thermoelement.
According to the experiment [4] the time-averaged cooling
rate corresponds to about dT/dt = 1 K/s. The top and side
wall are adiabatic; all interfaces are impermeable to Pb and
Sn. The bottom and the side wall are no-slip. The upper
free surface is free of tangential stresses and non-deform-
able. Thus, we neglect both surface tension effects and
the non-flatness of the interface due to the rotation. The
first can be justified by the coverage of the liquid metal sur-
face by an oxide film, which suppresses Marangoni stresses.
The rotation of the liquid causes a deformation of the free
surface proportional to the Froude number Fr ¼ X2R2

gH [24].
It was shown experimentally [24] that for Fr < 0.1 the free
surface of rotating fluid can be treated as a flat surface.
Thus, the latter is a good approximation for our work since
the Froude number does not exceed 0.1 in this study.
Applied to a RMF-driven flow with upper free surface this
approach showed a reasonable agreement between experi-
mental [25] and numerical data [7].

The solidification model described above has been
implemented into the open source code of a 2D Navier–
Stokes solver [26], where the SIMPLE algorithm with
collocated-variables arrangement is used to calculate the
pressure and the velocities. More details of the pressure–
velocity coupling algorithm can be found in [26].

The set of equations has been discretized by a finite-
volume–finite-difference based method. The system of
linear equations is solved by using Stone�s strongly implicit
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procedure (SIP). The time derivatives are discretized by a
three-time-level scheme. The convection terms are discret-
ized by a central difference second order scheme with
deferred correction (CDS).

Time marching with fixed time step was used. The max-
imal number of outer iterations per time step was equal to
2000 allowing us to reach residuals of less than 10�3 for
energy equation and less than 10�6 for momentum equa-
tions. We note that momentum conservation equations
converge faster than energy equation. Namely when the
residual of the energy equation reaches the value of 10�3,
the residual of momentum equations is less than 10�6. To
explain the difference in both residuals it must be noted,
that we solve the conservation equations written in the
dimensional form. Thus we have different residuals for
energy and momentum equations due to different orders
of magnitude of enthalpy and velocity. Numerical simula-
tions with residual less than 10�4 for the energy equation
showed identical cooling curves and velocity distributions.
Several grid-convergence and time-step-convergence tests
were performed to define proper grids and time steps lead-
ing to grid and time-step independent solutions. Details on
time steps and grid resolutions used in the simulations are
given in Table 1.

The validation of the solidification model and coupling
algorithms was done in work [27]. It was shown that for
B < 1 mT the experimental and numerical cooling curves
at the axis of rotation and at different heights from the bot-
tom of the mold agree reasonably well. The maximum devi-
ations of 5 �C for B = 0 mT and 10 �C B = 1 mT were
observed which can be explained by uncertainties in ecr
definition and temperature dependency of transport prop-
erties. With increase of B the deviation between experimen-
tal and numerical temperatures increased. But at the same
time the relatively good agreement in measured and calcu-
lated velocities was observed [27]. The reason of tempera-
ture deviation is under investigation.
3. Results

3.1. General remarks

Let us briefly recall the main findings of the isothermal
RMF-driven acceleration of a liquid from a stable state
of rest (spin-up) to provide a sound basis for the following
sections. After switching on the RMF the first phase is an
initial adjustment during which the inviscid fluid begins to
rotate due to the externally imposed azimuthal accelera-
tion. In parallel a meridional flow is induced by the unbal-
anced centrifugal forces. This occurs during approximately
the first revolution about the axis. In the subsequently fol-
lowing inertial phase, the spin-up flow is dominated by an
axially independent swirl in the core and Bödewadt layers
on the rigid horizontal boundaries. This is accompanied
by inertial oscillations. The development of the swirl occurs
on the spin-up time scale given by [28,7,6]
tspin-up ¼
H 0ffiffiffiffiffiffiffiffiffi
mXce

p . ð14Þ

The characteristic spin-up time for the various Ta numbers
studied are summarized in Table 1. It decreases with
increasing Ta. The effective rotation velocity Xce of the
inviscid core is then given by [6]:

Xce ¼ g4=3
1

4c

� �2=3

Xf

XfH 2
0

m

� �1=3
" #

; ð15Þ

where c stands for the Bödewadt layer coefficient which is
approximately c = 1.35. The parameter g describes the ax-
ial efficiency of the Lorentz force and depends strongly on
the ratio H0/R0. For long and tall cylindrical molds
(H0 � R0) g converges to unity. For wide molds of small
height, however, g is small [6]. For the geometry used in
this study (H0/R0 = 2.5) implying an aspect ratio of
A = 0.79, the Lorentz force efficiency is moderately high
(g = 0.71).

On increasing the Taylor number beyond a critical value
[14] depending on the aspect ratio, large-scale oscillations
occur [7]. These oscillations are caused by Taylor–Görtler
(T–G) vortices which appear pairwise near the cylinder
wall in between the two toroidal vortices of the secondary
flow. These T–G vortices move towards top and bottom
where they dissipate. Further increase of Ta causes a more
and more random appearance of the T–G vortices possess-
ing a complex three-dimension structure [29].

3.2. Description of the flow phases

With this picture in mind let us now combine this RMF-
driven flow with the directional solidification. When bot-
tom cooling of the melt coincides with switching on the
RMF we are faced with two counteracting processes. The
acceleration of the liquid phase during the spin-up is hin-
dered by the progressive solidification which is accompa-
nied by a decrease of the volume of the liquid phase, and
consequently a modification of aspect ratio and forcing.
To study these processes we make use of global velocities
of the entire fluid in the cavity, which allow a transparent
and elegant description of the complex and time-dependent
behavior. Namely, we introduce the volume-averaged pri-
mary and secondary flow velocities, Uh and Urz as follows:

U h ¼
2

R2
0H 0

Z H0

0

Z R0

0

ruh drdz; ð16Þ

Urz ¼
2

R2
0H 0

Z H0

0

Z R0

0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2r þ u2z

q
drdz. ð17Þ

In Fig. 2 we depict the time history of the volume-averaged
angular velocity, Xvol,

Xvol ¼
2

R2
0H 0

Z H0

0

Z R0

0

uh drdz; ð18Þ

scaled with Xce. For comparison we also show Xvol calcu-
lated for the isothermal spin-up. It can be seen that the
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solidification retards the melt convection since the angular
velocity remains significantly smaller as compared to the
isothermal melt.

To analyze the primary and secondary flow dynamics
for different B we show in Fig. 3a and b the time histories
of the volume-averaged azimuthal and meridional veloci-
ties, Uh and Urz. To compare the meridional velocity,
responsible for the convective transport towards the solid-
ification front, with the velocity of the solidification front
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phase. For comparison the velocity of the solidification front, dHs/dt, is
inserted (fine lines) in (b).
itself we additionally plot in Fig. 3b the volume-averaged
velocity of the solid front, oHs/ot, where Hs is given by

H s ¼
2

R2
0

Z H0

0

Z R0

0

esrdrdz. ð19Þ

This formulation for Hs was chosen since it is able to han-
dle the non-planarity of the solidification front at higher Ta
numbers as shown later on. For the cooling rate chosen the
velocity of the solidification front is 0.2–0.3 mm/s. It can be
seen that for B P 1 mT the meridional velocity exceeds the
velocity of the solid front. The resulting impact of Urz on
the shape of the mushy zone is discussed later on.

The analysis of Fig. 3a and b shows three different
phases of the flow during UDS. On referring to the isother-
mal spin-up [6] we denote them as

(1) initial adjustment (i.a.) phase;
(2) inertial or non-linear phase;
(3) braking phase.

The first initial adjustment (i.a.) phase comprises the
temporal interval from zero until point C (Fig. 3b) which
is localized at approximately 0.1 Æ tspin-up. This phase is
completed upon achieving the first maximum in the vol-
ume-averaged kinetic energy of the secondary flow. The
flow pattern of this phase has the shape of two toroidal
vortices located symmetrically with respect to the midplane
of the cylinder, see Fig. 4b. The suppression of the lower
vortex at smaller Ta numbers (Fig. 4a) is caused by buoy-
ancy as shown in Section 3.3. Due to the short stage of the
i.a. phase the viscous effects play a minor role.

The second inertial or non-linear phase [7,6] is located
between the first local maximum of Urz (point C, Fig. 3b)
and the maximum of Uh (point A), Fig. 3a). This regime
is basically characterized by a non-linear increase of
volume-averaged azimuthal velocity, Uh. We found that,
similar to the isothermal case [7,6], the first local minimum
in the time history of Urz (point D) belongs to the forma-
tion of the Bödewadt layer on the liquid–solid boundary.
The corresponding snapshots for two different B are pre-
sented in the Fig. 5. The flow reversal leading to the char-
acteristic spatially oscillating structure of the Bödewadt
layer is clearly visible in Fig. 5b. A main feature of the iner-
tial phase are inertial oscillations in the meridional flow
between the flow structure belonging to points C and D.
The way how the flow structure is transformed resembles
closely the isothermal case [7,6]. A marked consequence
of the inertial oscillations are fluctuations in the cooling
curves which are suppressed under normal g but visible
for g = 0 (cf. Section 3.3). Increase of magnetic field induc-
tion B, respectively Ta number beyond Ta > 5.1 · 104,
forces the appearance of Taylor–Görtler vortices already
during the inertial phase.

The third, braking phase starts at point A (Fig. 3a),
which belongs to t � 0.35 Æ tspin-up, which is valid as long
as the solidification time is of the same order of magnitude
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as tspin-up. This phase is characterized by a decrease of the
absolute value of volume-averaged azimuthal velocity.
Fig. 6 depicts a snapshot of the flow and the temperature
distributions at the time corresponding to the global max-
imum of Uh located at point A in Fig. 3a. The braking of
the primary flow occurs for all magnetic field strengths
studied and is noticeable when approximately one third
of the melt is solidified. For B > 0.5 mT this phase is char-
acterized by randomly appearing Taylor–Görtler vortices
moving up and downward along the side wall of the cylin-
der. Nevertheless, the meridional flow, averaged over three
rotations of the liquid melt, consists of two big toroidal
vortices (Fig. 7) where the meridional velocity in the upper
vortex near the free surface is about two times larger than
that of the lower vortex near the mushy zone (e.g. for
B = 3 mT the maximal meridional velocities in the upper
and lower vortices are about 7 mm/s and 3 mm/s, respec-
tively). Fig. 7 shows that the mean-time pattern of the pri-
mary flow in the interval ½0;R0=

ffiffiffi
2

p
� corresponds to a rigid

body rotation. The remaining interval ½R0=
ffiffiffi
2

p
;R0� until the
wall is the zone where the T–G vortices appear, which is in
close agreement with the work of Kaiser and Benz [8]. At
r � R0=

ffiffiffi
2

p
, the azimuthal velocity reaches its maximum.

Let us now study the impact of the secondary flow gov-
erning the advection of heat and mass to or away from the
mushy zone. On the axis of rotation where the secondary
flow is directed upwards, the heat transfer from the solidi-
fication front is enhanced. Close to the lateral walls the sec-
ondary flow is directed towards the mushy zone thus the
temperature gradient at this place is increased in compari-
son to the gradient on the axis of rotation. As a result a
convex curvature of the solid front sets in which is clearly
visible in Fig. 8. This marked effect of the secondary flow
occurs as soon as the volume-averaged meridional velocity
exceeds the volume-averaged velocity of solid front, i.e.
when Urz >

oH es
ot . In our parameter range this is the case

for B P 1 mT (cf. Fig. 3b). Within the secondary flow the
T–G vortices are an important ingredient since they are a
further mechanism for the enhancement of heat and mass
transfer. The T–G vortices are advected by meridional flow
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towards the free surface and the mushy zone where they are
dissipated. This dissipation is the origin of thermal waves
imposing a wavy roughness onto the mushy zone (cf.
Fig. 8), which was observed experimentally by Eckert
et al. [27]. The nature of the thermal waves is the fluctua-
tions of the enthalpy caused by fluid flow oscillations in
the slurry region due to dissipation of T–G vortices. In this
way these fluctuations lead to the oscillations of the volume
fraction of liquid and the temperature. To ensure the
absence of the influence of numerical ‘‘waves’’ first, we per-
formed grid study similar to the one done by Nikrityuk
et al, see Fig. 4 in Ref. [6]. Namely the grid we use in sim-
ulations gives the grid independent solution. Second we use
smoothed (exponential) dependency of the molecular vis-
cosity in the slurry region, e > ecr, on the volume fraction
of liquid, see Eq. (5), to avoid the appearing of numerical
instabilities in the upper mushy zone. We suppose that
the thermal waves may produce a local remelting of den-
drites. At the same time the local remelting of dendrite
arms may produce local enrichment by Sn of the liquid
phase in the mushy zone. In the case of columnar dendrites
in the mushy zone all these effects may cause columnar-
equiaxed transition (CET).

Next we want to show the influence of the Ta number on
the cooling curves. Fig. 9 shows cooling curves obtained at
the positions z = 2.0 cm and 5.5 cm for different Ta num-
bers. The tendency of increasing cooling on the axis of
rotation with increase of Ta can be seen. This is in good
agreement with the experimental data [4]. The difference
between B = 0 and 1 mT is not significant. However, for
B = 3 mT the deviation is increased. The secondary flow
induced by Ekman pumping increases the heat transfer
coefficient at the mushy zone. Near the wall we have the
inverse process: the downward flow decreases the cooling
rate, oT/ ot, in comparison to that on the axis of rotation.

3.3. Impact of buoyancy

To understand the impact of gravity on the flow pattern
of Section 3.2 and the macrosegregations (Section 3.4) a
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number of simulations with g = 0 were performed. We
observe that the time histories of Uh stay very close to that
detected under terrestrial conditions (Fig. 3a). By contrast,
significant changes in the behavior of Urz occur which are
shown in Fig. 10a for B = 0.5 mT and 1 mT. For
B = 3 mT the time histories of Urz, obtained for g = 0
and g 5 0, are again nearly identical. It can be seen that
the maximum damping of the convection occurs during
the initial adjustment (between t = 0 and point C 0) and iner-

tial (between the points C 0 and A 0) phases which is caused
by the high temperature gradients existing during the
beginning of solidification.
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Inspecting the flow dynamics under microgravity, we
observed a much more distinct double vortex structure in
which the intensities of both vortices are comparable. Thus
the suppression of the lower vortex under normal gravity,
see Fig. 4b, is indeed due to the stable density stratification
at the beginning which dissipates a part of the kinetic
energy available under microgravity. As a result, under
normal g the temperature isotherms have a planar shape,
see Fig. 4a and b. The flow dynamics and the heat transfer
during the braking phase are not different from the gravity
presence case described above.

On comparing the volume-averaged meridional flow
velocities under normal and microgravity (Fig. 10a) we find
under microgravity an increase of the velocity by approxi-
mately a factor of two. Thus, under microgravity already
the lowest B = 0.5 mT studied is sufficient to achieve the
same velocity as the solidification front, dHs/dt (cf.
Fig. 3b). As a result, the impact of the meridional flow onto
the shape of the mushy zone is considerably stronger under
microgravity.

Numerical simulations with and without solutal buoy-
ancy in all cases showed the same time histories of Uh

and Urz. Thus the solutal buoyancy is small in comparison
to thermal buoyancy. A threshold beyond which the buoy-
ancy influence can be neglected is derived in Section 4.

Fig. 10b depicts the consequences of microgravity on the
time history of the temperature. It shows persistent temper-
ature oscillations, the amplitude of which depends on the
height of the thermoelement position. The period of these
oscillations decreases with time and reaches a value of
approximately 7 s for the upper thermoelement. These
oscillations are caused by the inertial waves existing during
RMF-driven spin-up [6].

3.4. Macrosegregations

The simulations with the assumption ~us ¼ ~ul ðSh ¼
0; Sc ¼ 0Þ showed no macrosegregations. This is a natural
consequence of the vanishing source term Sc = 0 in Eq.
(8). The remaining diffusive term $qmD$(Cl � C) is not
able to provoke macrosegregation due to the disparate mac-
rotime scales for diffusion, O(103 s), and solidification,
O(102 s), at the given solidification rates of 0.2–0.3 mm/s.
However, it is a well known fact that the solidification pro-
cess which takes place with strong fluid flow normally pro-
duces significant segregations. Unfortunately we did not
find in the literature an extra relationship between ~us and
~ul for rotating melt for the mixture continuum model. The
usage of a model developed by Ni and Incropera [15] which
describes the relations for solid and liquid velocities under
gravity condition showed a solute distribution that contra-
dicts the experimental data for RMF-driven solidification
[3]. To overcome this problem we introduce a linear relation
between ~us and~u by analog to linear model of Flood et al.
[30], which is based on the assumption that the velocity of
free floating dendrites is proportional to the fluid flow
velocity in the slurry region of the mushy zone, namely:
~us ¼
ffiffi
e

p
~u. ð20Þ

We note that this concept lacks a physical basis and can be
used only for qualitative [31] analysis of an impact of the
movement of the equiaxed dendrites on the macrosegrega-
tion. Surprisingly we found that Eq. (20) works well. For
Ta < 106 this model produces segregation rates of less than
<2% in accord with the experiments [4]. Furthermore, this
sort of computed segregations correlates well with the data
of Roplekar and Dantzing [3] as explained next. Fig. 11
displays the computed distribution of the mixture mass
concentration of Sn normalized with C0 = 0.85 after com-
plete solidification at t = 220 s (B = 1 mT). Roplekar and
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Dantzig [3] showed that the application of an RMF leads
to macrosegregations in radial and axial direction. In par-
ticular, an enrichment of the eutectic phase was found on
top and in the central region of the cylinder. This finding
is confirmed by our results (Fig. 11) showing a negative
segregation on the axis of rotation and on the top of the
cylinder. This phenomenon is attributed to the secondary
flow inside the liquid phase. The vortex near the mushy
zone carries liquid which is rejected ahead of the mushy
zone towards the middle of the liquid phase. This liquid
is depleted in Sn since the liquid concentration continu-
ously decreases along the liquidus line until the eutectic
concentration is reached. In particular, the advection of li-
quid depleted in the lighter component is responsible for
the development of a liquid channel on the axis of rotation
inside of the mushy zone at a slow cooling rate, as pre-
dicted by Hainke et al. [9]. Fig. 12 illustrates this effect
for our system. The shifting of mixture concentration to-
ward the eutectic concentration on the axis of rotation
causes an M-shaped profile of the mushy zone.

The result of simulations showed furthermore that the
macrosegregations under microgravity are even worse than
under terrestrial conditions, see Fig. 11. In particular, the
oscillations caused by inertial waves under microgravity
lead to isoconcentration lines which spatially oscillate
along the z-axis in the lower part of the cavity, see
Fig. 11a. Under normal gravity (cf. Fig. 11c) the macroseg-
regations are less distinct since the secondary flow is
damped by the stable density stratification provided that
Ta < 1.7 · 106.

4. Discussion

Generally the solidification of a metal alloy is character-
ized by the existence of the jump of the electric conductivity
at the liquid/mold and liquid/solidification front. To
reduce the computational costs we restrict this work to
the assumption rs/rl = 1 in order to be able to investigate
the interference of spin-up problem with the solidification
of the melt in more detail. But we note that in general case
it is necessary to couple the calculation of conservation
equations with Lorentz force calculation [32]. Simplified
simulations showed that e.g. for the ratio rs/rl = 5 the vol-
ume-averaged azimuthal and meridional velocities exceed
their values calculated for rs/rl = 1 at about 15% [32].
The numerical study of the influence of the ratios rs/rl
and rw/rl on the fluid flow induced by RMF during solid-
ification of PbSn alloy is on progress and will be published
elsewhere.

Let us now turn to the rather specific influence of buoy-
ancy on the flow pattern which is pronounced at lower
Ta number while it is no longer significant for Ta �
1.8 · 106 (3 mT). To derive a more precise criterion we con-
sider the instant when the centrifugal force exceeds the
buoyancy force, namely:

u2h=r > gðbTðT s � T refÞ þ bCðCs � CrefÞÞ. ð21Þ
In the case that solutal buoyancy is smaller than thermal
buoyancy, after some transformations, using X = uh/r we
obtain

E <
ffiffiffiffiffiffiffiffiffiffiffi
1=Gr

p
. ð22Þ

Here E and Gr are Ekman and Grashof numbers,
respectively:

E ¼ m

XR2
0

; Gr ¼ gR3
0bTðT s � T refÞ

m2
. ð23Þ

Eq. (22) was used implicitly in work [33], where it was
shown, using the Richardson number, Ri = GrE2, that in
a rotating fluid buoyancy has a major influence on the
meridional flow provided Ri P 1. In our case using the
magnetic Taylor number and Eqs. (15), (22) and (23) we
obtain:

Ta >
c

A2g2
Gr3=4; ð24Þ

where A = 2R0/H0 and g depends on A. Following Eq.
(24), thermal buoyancy can be neglected for Ta > 1.7 ·
106 corresponding to B > 2.9 mT. This is in close agree-
ment with our numerical results.

Despite the advantages of the present mixture viscosity
model in treating the fluid dynamic aspects of solidification
there exist some limitations which we briefly want to
address (for a more detailed discussion we refer to [34]).
In our simulation ecr is the key uncertainty which has an
influence on the calculated temperature. A more closer
inspection shows that shifting ecr from 0.8 to 0.5 enhances
the heat transfer by approximately 10%. This is due to a
‘‘liquidisation’’ of the upper mushy zone resulting in a fas-
ter cooling of the melt. In the general case the value of ecr
should depend on the cooling rate. A significant improve-
ment foreseen in future work is to relate ecr to the local
undercooling determining the thickness of the slurry region
in the mushy zone.

5. Summary

In this paper we analyze the directional solidification
of Pb85wt%Sn in presence of a forced convection. This
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convection is driven by a rotatingmagnetic field (RMF)with
Taylor numbers, Ta, up to Ta = 2 · 106. In particular we
study the case when the beginning solidification interferes
with the so-called spin-up of the hot melt. Based on the anal-
ysis of the time histories of the volume-averaged azimuthal
and meridional velocities, the RMF-driven flow can be
divided into three phases, which are passed through as time
goes by. The first two phases, inertial adjustment (i.a.) and
inertial phase are similar to the isothermal spin-up problem
[7,6]. The third, braking phase is characterized by a decrease
of global azimuthal velocityUhmainly due to the permanent
decrease of the volume of the liquid fraction which implies
an increase of the aspect ratio (2R0/Hl) of the melt. In this
way the braking torques arising from friction in the Böde-
wadt and side wall layers retard increasingly the flow in the
melt.

The influence of the meridional flow on the shape of the
mushy zone becomes noticeable as soon as the meridional
velocity Urz exceeds the volume-averaged velocity of solid
front oHs/ot. For our cooling rate this occurs at
Ta � 2 · 105. From this instant on, the secondary flow is
responsible for a variety of effects. First, it enhances the
heat transfer coefficient at the mush-liquid boundary and
thereby provoking the marked change in slope of the cool-
ing curves visible on increasing Ta. Second, due to the
transport of hot melt towards the mush zone in regions
close to the lateral walls, a slower growth of the mushy
zone occurs there leading to the convex shape of the latter.
With increase of Ta, Taylor–Görtler (T–G) vortices appear
along the side wall which further enhance the heat and
mass transport due to their advection with the secondary
flow. Dissipation of T–G vortices in the mushy zone causes
thermal waves in the upper part of the mushy zone impos-
ing a wavy substructure on it.

Due to the initially stable density stratification in the
hypereutectic PbSn-alloy, buoyancy plays an important
role at low Ta. Buoyancy drastically damps the lower
meridional flow vortex, close to the mushy zone, thereby
significantly reducing the impact of the RMF-driven flow
on solidification. For Ta P 106 and A = 0.79 the buoyancy
influence can be neglected as derived in Section 4.
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